Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123701

ABSTRACT

Findings collected over two and a half years of the COVID-19 pandemic demonstrated that the level immunity resulting from vaccination and infection is insufficient to stop the circulation of new genetic variants. The short-term decline in morbidity was followed by a steady increase. The early identification of new genetic lineages that will require vaccine adaptation in the future is an important research target. In this study, we summarised data on the variability of genetic line composition throughout the COVID-19 pandemic in Moscow, Russia, and evaluated the virological and epidemiological features of dominant variants in the context of selected vaccine prophylaxes. The prevalence of the Omicron variant highlighted the low effectiveness of the existing immune layer in preventing infection, which points to the necessity of optimising the antigens used in vaccines in Moscow. Logistic growth curves showing the rate at which the new variant displaces the previously dominant variants may serve as early indicators for selecting candidates for updated vaccines, along with estimates of efficacy, reduced viral neutralising activity against the new strains, and viral load in previously vaccinated patients.


Subject(s)
COVID-19 , Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics
2.
Vaccines (Basel) ; 10(11)2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2090383

ABSTRACT

Medical personnel are a group of people that often encounter infectious agents, leading to greater risk of contracting infectious diseases. Specific prevention of diseases in this group is a priority. The epidemiological effectiveness of COVID-19 prevention in the group of medical workers due to the emergence of new variants of concern of the SARS-CoV-2 virus has not been studied in sufficient depth. We conducted a study of the effectiveness of vaccine use to protect medical workers at a large medical center for obstetrics and gynecology in Moscow. Sputnik V and Sputnik Light were the main vaccines used for the prevention of COVID-19. The vaccines are based on a variant of the S-protein of the SARS-CoV-2 virus, with adenovirus serotypes 5 and 26 as the vector for delivery. Vaccination of employees occurred during the period in which the Delta variant was spreading. The overall epidemiological effectiveness was 81.7% (73.1-87.6%) during the period in which the Delta variant was dominant. During the period from the beginning of vaccination (26 November 2020) until 8 February 2022, the overall effectiveness was 89.1% (86.9-91.0%). As expected, the highest effectiveness during this period was obtained in the group that received the third and fourth doses-96.5% (75.0-99.5%). The severity of COVID-19 in the vaccinated group was significantly lower than in the unvaccinated group.

3.
Vaccines (Basel) ; 10(6)2022 Jun 13.
Article in English | MEDLINE | ID: covidwho-1911687

ABSTRACT

Mass vaccination campaigns against COVID-19 affected more than 90% of the population in most developed countries. The new epidemiologic wave of COVID-19 has been ongoing since the end of 2021. It is caused by a virus variant B.1.1.529, also known as "Omicron" and its descendants. The effectiveness of major vaccines against Omicron is not known. The purpose of this study is to evaluate the efficacy of the Sputnik V vaccine. The main goal is to assess its protection against hospitalization in the period of Omicron dominance. We conducted our study based on a large clinical center in Moscow (Russia) where 1112 patients were included. We used the case-population method to perform the calculations. The data we obtained indicate that the Omicron variant causes at least 90% of infections in the studied cohort. The effectiveness of protection against hospitalization with COVID-19 in our study was 85.9% (95% CI 83.0-88.0%) for those who received more than one dose. It was 87.6% (95% CI 85.4-89.5%) and 97.0% (95% CI 95.9-97.8%) for those who received more than two or three doses. The effectiveness in cases of more severe forms was higher than for less severe ones. Thus, present study indicates the high protective efficacy of vaccination against hospitalization with COVID-19 in case of Omicron lineage.

4.
Int J Environ Res Public Health ; 18(17)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1374403

ABSTRACT

The SARS-CoV-2 pandemic remains a global health issue for several reasons, such as the low vaccination rates and a lack of developed herd immunity to the evolution of SARS-CoV-2, as well as its potential inclination to elude neutralizing antibodies. It should be noted that the severity of the COVID-19 disease is significantly affected by the presence of co-infections. Comorbid conditions are caused not only by pathogenic and opportunistic microorganisms but also by some representatives of the environmental microbiome. The presence of patients with moderate and severe forms of the disease in hospitals indicates the need for epidemiological monitoring of (1) bacterial pathogens circulating in hospitals, especially the ESKAPE group pathogens, and (2) the microbiome of various surfaces in hospitals. In our study, we used combined methods based on PCR and NGS sequencing, which are widely used for epidemiological monitoring. Through this approach, we identified the DNA of pathogenic bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, CoNS, and Achromobacter spp.) on various surfaces. We also estimated the microbiome diversity of surfaces and identified the potential reservoirs of infections using 16S rRNA profiling. Although we did not assess the viability of identified microorganisms, our results indicate the possible risks of insufficient regular disinfection of surfaces, regardless of department, at the Infectious Diseases Hospital. Controlling the transmission of nosocomial diseases is critical to the successful treatment of COVID-19 patients, the rational use of antimicrobial drugs, and timely decontamination measures.


Subject(s)
COVID-19 , Bacteria/genetics , Disease Outbreaks , Hospitals , Humans , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL